make your own neural network

Download Book Make Your Own Neural Network in PDF format. You can Read Online Make Your Own Neural Network here in PDF, EPUB, Mobi or Docx formats.

Python Machine Learning

Author : Sebastian Raschka
ISBN : 9781783555147
Genre : Computers
File Size : 64. 38 MB
Format : PDF, ePub
Download : 171
Read : 1200

Download Now


Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Neural Network Design 2nd Edition

Author : Martin Hagan
ISBN : 0971732116
Genre :
File Size : 24. 10 MB
Format : PDF
Download : 228
Read : 440

Download Now


This book provides a clear and detailed coverage of fundamental neural network architectures and learning rules. In it, the authors emphasize a coherent presentation of the principal neural networks, methods for training them and their applications to practical problems.

An Introduction To Neural Networks

Author : Kevin Gurney
ISBN : 9780203451519
Genre : Computers
File Size : 35. 13 MB
Format : PDF
Download : 404
Read : 1283

Download Now


Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.

Introduction To Neural Networks With Java

Author : Jeff Heaton
ISBN : 9781604390087
Genre : Computers
File Size : 60. 42 MB
Format : PDF
Download : 918
Read : 1109

Download Now


Introduction to Neural Networks in Java, Second Edition, introduces the Java programmer to the world of Neural Networks and Artificial Intelligence. Neural network architectures such as the feedforward, Hopfield, and Self Organizing Map networks are discussed. Training techniques such as Backpropagation, Genetic Algorithms and Simulated Annealing are also introduced. Practical examples are given for each neural network. Examples include the Traveling Salesman problem, handwriting recognition, financial prediction, game strategy, learning mathematical functions and special application to Internet bots. All Java source code can be downloaded online.

Neural Networks For Applied Sciences And Engineering

Author : Sandhya Samarasinghe
ISBN : 1420013068
Genre : Computers
File Size : 40. 97 MB
Format : PDF, ePub, Mobi
Download : 664
Read : 1144

Download Now


In response to the exponentially increasing need to analyze vast amounts of data, Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition provides scientists with a simple but systematic introduction to neural networks. Beginning with an introductory discussion on the role of neural networks in scientific data analysis, this book provides a solid foundation of basic neural network concepts. It contains an overview of neural network architectures for practical data analysis followed by extensive step-by-step coverage on linear networks, as well as, multi-layer perceptron for nonlinear prediction and classification explaining all stages of processing and model development illustrated through practical examples and case studies. Later chapters present an extensive coverage on Self Organizing Maps for nonlinear data clustering, recurrent networks for linear nonlinear time series forecasting, and other network types suitable for scientific data analysis. With an easy to understand format using extensive graphical illustrations and multidisciplinary scientific context, this book fills the gap in the market for neural networks for multi-dimensional scientific data, and relates neural networks to statistics. Features § Explains neural networks in a multi-disciplinary context § Uses extensive graphical illustrations to explain complex mathematical concepts for quick and easy understanding ? Examines in-depth neural networks for linear and nonlinear prediction, classification, clustering and forecasting § Illustrates all stages of model development and interpretation of results, including data preprocessing, data dimensionality reduction, input selection, model development and validation, model uncertainty assessment, sensitivity analyses on inputs, errors and model parameters Sandhya Samarasinghe obtained her MSc in Mechanical Engineering from Lumumba University in Russia and an MS and PhD in Engineering from Virginia Tech, USA. Her neural networks research focuses on theoretical understanding and advancements as well as practical implementations.

Neural Networks In Finance

Author : Paul D. McNelis
ISBN : 9780080479651
Genre : Computers
File Size : 48. 87 MB
Format : PDF, Mobi
Download : 574
Read : 562

Download Now


This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong. * Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website

Neural Networks And Learning Machines

Author : Simon S. Haykin
ISBN : 9780131471399
Genre : Computers
File Size : 78. 4 MB
Format : PDF, Kindle
Download : 980
Read : 319

Download Now


For graduate-level neural network courses offered in the departments of Computer Engineering, Electrical Engineering, and Computer Science. Neural Networks and Learning Machines, Third Edition is renowned for its thoroughness and readability. This well-organized and completely up-to-date text remains the most comprehensive treatment of neural networks from an engineering perspective. This is ideal for professional engineers and research scientists. Matlab codes used for the computer experiments in the text are available for download at: http://www.pearsonhighered.com/haykin/ Refocused, revised and renamed to reflect the duality of neural networks and learning machines, this edition recognizes that the subject matter is richer when these topics are studied together. Ideas drawn from neural networks and machine learning are hybridized to perform improved learning tasks beyond the capability of either independently.

Top Download: